Targeting acquired resistance to HIF2α inhibition in ccRCC

Qing Zhang, Ph.D
UT Southwestern Medical Center
10/06/2022
Mechanism of inhibition and the development of resistance after prolonged treatment of PT2399 in renal cancer

Hasanov et al., 2021; Chen et al., 2016

Belzutifan

RCC tumourgraft-bearing mice

Hasanov et al., 2021; Chen et al., 2016
Establishment of PT2399 resistant ccRCC cell lines

Soft agar quantification

Fangzhou Zhao

2022 Kidney Cancer Research Research Summit
Multi-omics characterization of resistant cell lines

94 genes with differential signals from all sequencing data

Pathway enrichment for all upregulated genes

- HDACs deacetylate histones
- Formation of the beta-catenin:TCF ...
- Sialic acid metabolism
- Immunoregulatory interactions between a ...
- Antiviral mechanism by IFN-stimulated genes
 - ISG15 antiviral mechanism
 - ERCC6 (CSB) and EHMT2 ...
 - Signaling by Nuclear Receptors
 - Condensation of Prophase Chromosomes
 - SIRT1 negatively regulates rRNA expression
 - PRC2 methylates histones and DNA
 - Activated PKN1 stimulates transcription ...
 - Packaging Of Telomere Ends
 - DNA methylation
 - RNA Polymerase I Promoter Opening
 - Amyloid fiber formation
 - Endosomal/Vacuolar pathway
 - Interferon gamma signaling
 - Interferon Signaling
 - Interferon alpha/beta signaling

Jeremy Simon
Both mRNA and protein levels of p72 are upregulated in PT2399 resistant cell lines.
p72 overexpression induces partial resistance to HIF2α inhibition

Fangzhou Zhao

2022 Kidney Cancer Research Summit
Conclusions

• We have established HIF2α inhibitor adaptive resistant ccRCC cell lines

• Multi-omics approaches identifies signaling pathways that may be important mediating HIF2α inhibitor resistance

• P72 was identified to be important partially mediating HIF2α inhibitor resistance in ccRCC